REDES

CONFIGURACIÓN DE UNA INTERFAZ DE ROUTER IPV4

Una característica que distingue a los switches de los routers es el tipo de interfaces que admite cada uno. Por ejemplo, los switches de capa 2 admiten redes LAN y, por lo tanto, tienen varios puertos FastEthernet o Gigabit Ethernet.

Los routers admiten redes LAN y WAN, y pueden interconectar distintos tipos de redes; por lo tanto, admiten muchos tipos de interfaces. Por ejemplo, los ISR G2 tienen una o dos interfaces Gigabit Ethernet integradas y ranuras para tarjetas de interfaz WAN de alta velocidad (HWIC) para admitir otros tipos de interfaces de red, incluidas las interfaces seriales, DSL y de cable.

Para que una interfaz esté disponible, debe cumplir los siguientes requisitos:

  • Estar configurada con una dirección IP y una máscara de subred: utilice el comando de dirección IP ip-address subnet-mask para la configuración de interfaz.
  • Activar la interfaz: las interfaces LAN y WAN no están activadas (shutdown) de manera predeterminada. Para habilitar una interfaz, esta se debe activar mediante el comando no shutdown. (Es como encender la interfaz.) La interfaz también debe estar conectada a otro dispositivo (un hub, un switch u otro router) para que la capa física se active.

Opcionalmente, la interfaz también se puede configurar con una descripción breve de hasta 240 caracteres. Es aconsejable configurar una descripción en cada interfaz. En las redes de producción, se obtienen rápidamente los beneficios de las descripciones de la interfaz ya que son útiles para resolver problemas e identificar una información de contacto y de conexión de terceros.

En las figuras 1 a 3, se proporcionan ejemplos de configuración de las interfaces del router R1. En la Figura 3, observe que el estado de Serial0/0/0 es inactivo (down). El estado cambia a activo (up) cuando la interfaz Serial0/0/0 de R2 se configura y se activa.

123

REDES

HABILITACIÓN DE IP EN UN HOST

Se puede asignar información de dirección IP a un host de dos formas:

Estática: se asigna la dirección IP, la máscara de subred y el gateway predeterminado correctos al host de forma manual. También se puede configurar la dirección IP del servidor DNS.

Dinámica: un servidor proporciona la información de dirección IP mediante el protocolo de configuración dinámica de host (DHCP). El servidor de DHCP proporciona una dirección IP, una máscara de subred y un gateway predeterminado válidos para las terminales. El servidor también puede proporcionar otra información.

En las figuras 1 y 2, se proporcionan ejemplos de configuración estática y dinámica de direcciones IPv4.

12

Por lo general, las direcciones asignadas estáticamente se usan para identificar recursos de red específicos, como servidores e impresoras de red. También se pueden usar en redes más pequeñas con pocos hosts. Sin embargo, la mayoría de los dispositivos host adquieren su información de dirección IPv4 accediendo a un servidor DHCPv4. En las empresas grandes, se implementan servidores DHCPv4 dedicados que proporcionan servicios a muchas LAN. En un entorno más pequeño de sucursal u oficina pequeña, un switch Cisco Catalyst o un ISR Cisco pueden proporcionar los servicios de DHCPv4.

REDES

TRACEROUTE: PRUEBA DE LA RUTA

El comando ping se usa para probar la conectividad entre dos hosts, pero no proporciona información sobre los detalles de los dispositivos entre los hosts. Traceroute (tracert) es una utilidad que genera una lista de saltos que se alcanzaron correctamente a lo largo de la ruta. Esta lista puede proporcionar información importante sobre la verificación y la solución de problemas. Si los datos llegan al destino, el rastreo indica la interfaz de cada router que aparece en la ruta entre los hosts. Si los datos fallan en algún salto a lo largo del camino, la dirección del último router que respondió al rastreo puede indicar dónde se encuentra el problema o las restricciones de seguridad.

Tiempo de ida y vuelta (RTT)

El uso de traceroute proporciona el tiempo de ida y vuelta para cada salto a lo largo de la ruta e indica si un salto no responde. El tiempo de ida y vuelta es el tiempo que le lleva a un paquete llegar al módulo remoto de E/S y el tiempo que la respuesta del host demora en regresar. Se utiliza un asterisco (*) para indicar un paquete perdido o sin respuesta.

Esta información se puede utilizar para ubicar un router problemático en la ruta. Si en la pantalla se muestran tiempos de respuesta elevados o pérdidas de datos de un salto en particular, esto constituye un indicio de que los recursos del router o sus conexiones pueden estar sobrecargados.

TTL de IPv4 y límite de saltos de IPv6

Traceroute utiliza una función del campo TTL en IPv4 y del campo límite de saltos de IPv6 en los encabezados de capa 3, junto con el mensaje de tiempo superado de ICMP.

La primera secuencia de mensajes enviados desde traceroute tiene un valor de 1 en el campo TTL. Esto hace que el TTL agote el tiempo de espera del paquete IPv4 en el primer router. Este router luego responde con un mensaje de ICMPv4. Traceroute ahora tiene la dirección del primer salto.

A continuación, Traceroute incrementa progresivamente el campo TTL (2, 3, 4…) para cada secuencia de mensajes. De esta manera se proporciona al rastreo la dirección de cada salto a medida que los paquetes agotan el límite de tiempo a lo largo del camino. El campo TTL sigue aumentando hasta que se alcanza el destino, o se incrementa a un máximo predefinido.

Después de alcanzar el destino final, el host responde con un mensaje ICMP de puerto inalcanzable o con un mensaje ICMP de respuesta de eco en lugar del mensaje ICMP de tiempo superado.

REDES

PING: PRUEBA DE LA CONECTIVIDAD A UNA RED REMOTA

También se puede utilizar el comando ping para probar la capacidad de un host local para comunicarse en una interconexión de redes. El host local puede hacer ping a un host IPv4 operativo de una red remota.

Si este ping se realiza correctamente, se puede verificar el funcionamiento de una amplia porción de la interconexión de redes. Un ping correcto en una interconexión de redes confirma la comunicación en la red local, el funcionamiento del router que sirve como gateway y el funcionamiento de todos los routers que podrían estar en la ruta entre la red local y la red del módulo remoto de E/S.

De manera adicional, se puede verificar la funcionalidad del módulo remoto de E/S. Si el módulo remoto de E/S no podía comunicarse fuera de la red local, no hubiera respondido.

Nota: muchos administradores de redes limitan o prohíben la entrada de mensajes ICMP a la red de la empresa; por lo tanto, la falta de una respuesta de ping puede ser por razones de seguridad.

REDES

PING: PRUEBA DE LA CONECTIVIDAD A LA LAN LOCAL

También es posible utilizar el comando ping para probar la capacidad de comunicación de un host en la red local. Por lo general, esto se realiza haciendo ping a la dirección IP del gateway del host. Un ping al gateway indica que la interfaz del host y la interfaz del router que cumplen la función de gateway funcionan en la red local.

Para esta prueba, se suele usar la dirección de gateway porque el router generalmente está en funcionamiento. Si la dirección de gateway no responde, se puede enviar un ping a la dirección IP de otro host en la red local que se sepa que funciona.

Si el gateway u otro host responden, los hosts locales pueden comunicarse correctamente en la red local. Si el gateway no responde pero otro host sí lo hace, esto podría indicar un problema con la interfaz de router que sirve como gateway.

Una posibilidad es que se haya configurado la dirección de gateway incorrecta en el host. Otra posibilidad es que la interfaz del router puede estar en funcionamiento, pero se le ha aplicado seguridad, de manera que no procesa o responde solicitudes de ping.

1.PNG

 

REDES

PING: PRUEBA DE LA PILA LOCAL

Ping es una utilidad de prueba que utiliza mensajes de solicitud y de respuesta de eco ICMP para probar la conectividad entre hosts. Ping funciona con hosts IPv4 e IPv6.

Para probar la conectividad con otro host de una red, se envía una solicitud de eco a la dirección de host mediante el comando ping. Si el host en la dirección especificada recibe la solicitud de eco, responde con una respuesta de eco. A medida que se recibe cada respuesta de eco, el comando ping proporciona comentarios acerca del tiempo transcurrido entre el envío de la solicitud y la recepción de la respuesta. Esto puede ser una medida del rendimiento de la red.

El comando ping tiene un valor de tiempo de espera para la respuesta. Si no se recibe una respuesta dentro del tiempo de espera, el comando ping proporciona un mensaje que indica que no se recibió una respuesta. Generalmente, esto indica que existe un problema, pero también podría indicar que se habilitaron características de seguridad que bloquean los mensajes ping en la red.

Una vez que se envían todas las solicitudes, la utilidad ping proporciona un resumen que incluye la tasa de éxito y el tiempo promedio del viaje de ida y vuelta al destino.

PING DEL BUCLE INVERTIDO LOCAL

Existen casos especiales de prueba y verificación para los cuales se puede usar el comando ping. Un caso es la prueba de la configuración interna de IPv4 o de IPv6 en el host local. Para realizar esta prueba, se debe hacer ping a la dirección de bucle invertido local 127.0.0.1 para IPv4 (::1 para IPv6). En la ilustración, se muestra la prueba de la dirección IPv4 de bucle invertido.

Una respuesta de 127.0.0.1 para IPv4 (o ::1 para IPv6) indica que IP está instalado correctamente en el host. Esta respuesta proviene de la capa de red. Sin embargo, esta respuesta no indica que las direcciones, las máscaras o los gateways estén configurados adecuadamente. Tampoco indica nada acerca del estado de la capa inferior de la pila de red. Simplemente, prueba el protocolo IP en la capa de red de dicho protocolo. Un mensaje de error indica que TCP/IP no funciona en el host.

1.PNG

REDES

ICMPv4 e ICMPv6

Si bien IP no es un protocolo confiable, el paquete TCP/IP permite que los mensajes se envíen en caso de que se produzcan determinados errores. Estos mensajes se envían mediante los servicios de ICMP. El objetivo de estos mensajes es proporcionar respuestas acerca de temas relacionados con el procesamiento de paquetes IP en determinadas condiciones, no es hacer que IP sea confiable. Los mensajes de ICMP no son obligatorios y, a menudo, no se permiten dentro de una red por razones de seguridad.

El protocolo ICMP está disponible tanto para IPv4 como para IPv6. El protocolo de mensajes para IPv4 es ICMPv4. ICMPv6 proporciona estos mismos servicios para IPv6, pero incluye funcionalidad adicional.

Existe una gran variedad de tipos de mensajes de ICMP y de razones para enviarlos. Analizaremos algunos de los mensajes más comunes.

Los mensajes ICMP comunes a ICMPv4 y a ICMPv6 incluyen lo siguiente:

Confirmación de host

Destino o servicio inaccesible

Tiempo superado

Redireccionamiento de ruta

Confirmación de host

Se puede utilizar un mensaje de eco ICMP para determinar si un host funciona. El host local envía una solicitud de eco ICMP a un host. Si el host se encuentra disponible, el host de destino responde con una respuesta de eco. En la ilustración, haga clic en el botón Reproducir para ver una animación de la solicitud de eco/respuesta de eco ICMP. Este uso de los mensajes de eco ICMP es la base de la utilidad ping.

DESTINO O SERVICIO INACCESIBLE

Cuando un host o gateway recibe un paquete que no puede entregar, puede utilizar un mensaje ICMP de destino inalcanzable para notificar al origen que el destino o el servicio son inalcanzables. El mensaje incluye un código que indica el motivo por el cual no se pudo entregar el paquete.

Algunos de los códigos de destino inalcanzable para ICMPv4 son los siguientes:

0: red inalcanzable

1: host inalcanzable

2: protocolo inalcanzable

3: puerto inalcanzable

TIEMPO SUPERADO

Los routers utilizan los mensajes de tiempo superado de ICMPv4 para indicar que un paquete no puede reenviarse debido a que el campo de tiempo de duración (TTL) del paquete se disminuyó a 0. Si un router recibe un paquete y disminuye el campo TTL en el paquete IPV4 a cero, descarta el paquete y envía un mensaje de tiempo superado al host de origen.

ICMPv6 también envía un mensaje de tiempo superado si el router no puede reenviar un paquete IPv6 debido a que el paquete caducó. IPv6 no tiene un campo TTL, por lo que utiliza el campo de límite de saltos para determinar si el paquete caducó.

REDES

NECESIDAD DE UTILIZAR IPV6

IPv6 está diseñado para ser el sucesor de IPv4. IPv6 tiene un mayor espacio de direcciones de 128 bits, lo que proporciona 340 sextillones de direcciones. (Es decir, el número 340 seguido por 36 ceros). Sin embargo, IPv6 es más que solo direcciones más extensas. Cuando el IETF comenzó el desarrollo de un sucesor de IPv4, utilizó esta oportunidad para corregir las limitaciones de IPv4 e incluir mejoras adicionales. Un ejemplo es el protocolo de mensajes de control de Internet versión 6 (ICMPv6), que incluye la resolución de direcciones y la configuración automática de direcciones, las cuales no se encuentran en ICMP para IPv4 (ICMPv4).

NECESIDAD DE UTILIZAR IPV6

El agotamiento del espacio de direcciones IPv4 fue el factor que motivó la migración a IPv6. Debido al aumento de la conexión a Internet en África, Asia y otras áreas del mundo, las direcciones IPv4 ya no son suficientes como para admitir este crecimiento.

IPv4 tiene un máximo teórico de 4300 millones de direcciones. Las direcciones privadas en combinación con la traducción de direcciones de red (NAT) fueron esenciales para demorar la reducción del espacio de direcciones IPv4. Sin embargo, la NAT rompe muchas aplicaciones y tiene limitaciones que obstaculizan considerablemente las comunicaciones entre pares.

INTERNET DE TODO

En la actualidad, Internet es significativamente distinta de cómo era en las últimas décadas. Actualmente, Internet es mucho más que el correo electrónico, las páginas web y la transferencia de archivos entre computadoras. Internet evoluciona y se está convirtiendo en una Internet de los objetos. Ya no serán solo las computadoras, las tabletas PC y los teléfonos inteligentes los únicos dispositivos que accedan a Internet. Los dispositivos del futuro preparados para acceder a Internet y equipados con sensores incluirán desde automóviles y dispositivos biomédicos hasta electrodomésticos y ecosistemas naturales.

Con una población que accede a Internet cada vez mayor, un espacio de direcciones IPv4 limitado, los problemas de NAT y la Internet de todo, llegó el momento de comenzar la transición hacia IPv6.

COEXISTENCIA DE IPV4 E IPV6

No hay una única fecha para realizar la transición a IPv6. En un futuro cercano, IPv4 e IPv6 coexistirán. Se espera que la transición demore años. El IETF creó diversos protocolos y herramientas para ayudar a los administradores de redes a migrar las redes a IPv6. Las técnicas de migración pueden dividirse en tres categorías:

Dual-stack: como se muestra en la figura 1, la técnica dual-stack permite que IPv4 e IPv6 coexistan en el mismo segmento de red. Los dispositivos dual-stack ejecutan pilas de protocolos IPv4 e IPv6 de manera simultánea.

1.PNG

Tunelización: como se muestra en la figura 2, el protocolo de túnel es un método para transportar un paquete IPv6 en una red IPv4. El paquete IPv6 se encapsula dentro de un paquete IPV4, de manera similar a lo que sucede con otros tipos de datos.

2.PNG

Traducción: como se muestra en la figura 3, la traducción de direcciones de red 64 (NAT64) permite que los dispositivos habilitados para IPv6 se comuniquen con los dispositivos habilitados para IPv4 mediante una técnica de traducción similar a NAT para IPv4. Un paquete IPv6 se traduce a un paquete IPv4 y viceversa.

3

REDES

ASIGNACIÓN DE DIRECCIONES IP

Para que una empresa u organización admita hosts de red, por ejemplo, servidores web a los que se accede desde Internet, esa organización debe tener asignado un bloque de direcciones públicas. Se debe tener en cuenta que las direcciones públicas deben ser únicas, y el uso de estas direcciones públicas se regula y se asigna a cada organización de forma independiente. Esto es válido para las direcciones IPv4 e IPv6.

La Autoridad de Números Asignados de Internet (IANA) (http://www.iana.org) administra las direcciones IPv4 e IPv6. La IANA administra y asigna bloques de direcciones IP a los Registros Regionales de Internet (RIR). Haga clic en cada uno de los RIR de la ilustración para ver más información.

Los RIR se encargan de asignar direcciones IP a los ISP, quienes a su vez proporcionan bloques de direcciones IPv4 a las organizaciones y a los ISP más pequeños. Las organizaciones pueden obtener sus direcciones directamente de un RIR, según las políticas de ese RIR.

REDES

DIRECCIONAMIENTO SIN CLASE

Como se muestra en la ilustración, el sistema con clase asignaba el 50 % de las direcciones IPv4 disponibles a 128 redes de clase A, el 25 % de las direcciones a la clase B, y la clase C compartía el 25 % restante con las clases D y E. El problema es que así se desperdiciaba una gran cantidad de direcciones y se agotaba la disponibilidad de las direcciones IPv4. No todos los requisitos de las organizaciones se ajustaban a una de estas tres clases. Por ejemplo, una empresa que tenía una red con 260 hosts necesitaría recibir una dirección de clase B con más de 65 000 direcciones, con lo que se desperdiciarían 64 740 direcciones.

1.PNG

El direccionamiento con clase se abandonó a fines de la década de 1990 para favorecer el sistema de direccionamiento sin clase actual. Sin embargo, todavía existen versiones con clase en las redes actuales. Por ejemplo, cuando se asigna una dirección IPv4 a una computadora, el sistema operativo examina la dirección que se asigna para determinar si es de clase A, B o C. El sistema operativo después asume el prefijo que usa esa clase y realiza la asignación de la máscara de subred predeterminada.

El sistema usado actualmente se conoce como direccionamiento sin clase. El nombre formal es “Classless Inter-Domain Routing” (CIDR, pronunciado “cider”). En 1993, el IETF creó un nuevo conjunto de estándares que permitía que los proveedores de servicios asignaran direcciones IPv4 en cualquier límite de bits de dirección (longitud de prefijo) en lugar de solo con una dirección de clase A, B o C. Se hizo para poder demorar la disminución y el agotamiento final de las direcciones IPv4.

El IETF sabía que el CIDR era solo una solución temporal y que sería necesario desarrollar un nuevo protocolo IP para admitir el rápido crecimiento de la cantidad de usuarios de Internet. En 1994, el IETF comenzó a trabajar para encontrar un sucesor de IPv4, que finalmente fue IPv6.